(资料图片仅供参考)
1、包含内容不同:矩阵论:线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积,阿达马积与反积;几类特殊矩阵,如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等,辛空间与辛矩阵等内容。
2、2、矩阵理论:线性空间与线性变换、内积空间与等距变换、特征值与特征向量、λ-矩阵与Jordan标准形、特殊矩阵、矩阵分析初步、矩阵函数的应用、矩阵的分解、非负矩阵、矩阵的广义逆、Kronecker积。
3、3、矩阵分析:特征值、特征向量和相似性,酉等价和正规矩阵,标准形,Hermite矩阵和对称矩阵,向量范数和矩阵范数,特征值和估计和扰动,正定矩阵,非负矩阵。
4、适用范围不同:矩阵论:学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。
5、2、矩阵理论:适合工科研究生及从事工程的专业技术人员。
6、3、矩阵分析:可为工程、统计、经济学等专业的研究生和数学专业高年级本科生提供相应知识,也可丰富数学工作者和科技人员的专业素养。
本文到此分享完毕,希望对大家有所帮助。
广告
X 关闭
广告
X 关闭